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One-dimensional Phase Retrieval Problem

The field can be represented by a one-dimensional entire
function F(¢).

The Cauchy-Riemann equations must be satisfied :

FRe[F()] _ Am{F({)]

A a
IRe[F(Q)] _ Am[F({)]
& A

This gives strict relationships between the behavior of the
real and imaginary parts of an analytic function.

F(<) can be represented by its zero points in product form.
This product is known as the Hadamard product,

F(O)= Aﬁla—a/ £)
1

where A is a normalization factor and ¢, is the jth zero
location of the function F(¢).




Fourier transform of a one dimensional signal
or image of compact support is an entire
function of exponential type

can be represented in terms of their real
and complex point zero locations by means
of an infinite product of factors (the
Hadamard product)

complex zeros of the spectrum and its
complex conjugate are located
symmetrically about the real axis

if N complex zeros located, then 2N-1
distinct complex functions consistent with
the measured intensity
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Two-dimensional Phase Retrieval Problem

A 2-D bandlimited function can be represented by its zero
structure. (Osgood product)

N v j(z1,22) 1L
F(Zlazz):H[Fj(ZhZz)e i
J=1

Where ¢ are referred to as convergence factors, y, is a
polynomial and L, is an integer.

If the spectrum F(u,v) is a reducible function, for example
F(u,v)=F(u,v)-F,(u,v),

then
Gy (u,v) = F,(u,v)- Fy(u,)
G, (u,v) = F,(u,v)- F, (u,)
Gy(u,v) = (u,v)- Fy (u,v)

G,(u,v) = E*(u,v) ~ Ez*(u,v)
all have the same Fourier intensity, this cause ambiguities.

Since the 2-D bandlimited functions are general
irreducible, reducible functions form a set of measure zero
in the space of entire functions, we are expecting the phase
retrieval problem have a unique solution.
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Fourier transform in more than one dimension:

generally not factorizable into an infinite
product of terms and is irreducible

irreducible factor encodes a zero structure
which weaves itself through the associated
complex space, of which the real plane is
the only surface on which data are
measured.

Methods for phase retrieval

Direct.....slow
Iterative...convergence problems
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When can phase be directly recovered from
intensity?

minimum phase condition
holography
spectrum has only real zeros

The significance of this is that real zeros are
measured data points common to both the
power and complex spectrum.

When does a bandlimited function have
only real zeros?

When are there sufficient real zeros present
that their co-ordinates can be used to
uniquely recover the complex function?




Conditions for 1D functions
to have only real zeros

FT{f(t)} = F(x + 1iy)

i) f(t) positive, non-decreasing t=0,
and even (or odd)....F(x) real
simple zeros

ii) f(t) positive, decreasing t=0, and

nowhere convex....F(x) only real
Zeros

iii) F(x) real then F"(x) only real
zeros for some n > N

iv) a =< fl(t)/f(t) <= B then zeros of
F(z) lie in o <=y =< for f(t) > 0

Polya:
“...could see no general rules...”

OSA SRSVI ‘98
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‘Under what conditions do spectra
have a preponderance of real zero

crossings?

i.e. sufficient to provide a
reconstruction of the image

Are these real zero crossings
isolated points or lines or contours?

Is there anything in the literature?

1D or 2D bandlimited functions

Is there any insight from physical
measurements?

TR |




Two dimensional bandlimited functions are
generally irreducible.

The zero sheet of a polynomial with two
complex variables is a 2-D surface
embedded in a 4-D space.

Real zeros can only occur on:

(1) Closed contour
(2) Infinitely extended curve
(3) Isolated points




Suppose there are sufficient real zeros to
represent complex function?

How do we know this?
Shannon sampling theorem and

Hadamard product
How do we recover the function?
1D Hadamard product
2D Osgood product (?)

or estimation technique: local
product representation

estimation/extrapolation method
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Fig.1. The zero lines in mod(F) on the x;-x3 plane for a featureless with respect to the rest
square object. . .

Fig. 4. The zeros of Im[F(x,, x)}, where fou is the same as for Fig.
3.
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Solution from real zeros?

Product (Hadamard) formalism
to get initial phase estimate, then
iterate.

Chen, P-T, M. A. Fiddy, C-W. Liao and D. A. Pommet, “Blind
deconvolution and phase retrieval using point zeros”, J. Opt. Soc. of
Amer. A, 13, pp1524-1531, 1996.

Use of spectral estimation
technique (PDFT) from zero
crossings

Liao C-W, M. A. Fiddy and C. L. Byme, “Imaging of targets from
intensity data”, J. Opt. Soc. Amer. A 14, pp3155-3161, 1997.
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Zero Phase Retrieval

Points at which 2D spectra of bandlimited
functions are zero can be used to generate a
polynomial approximation of the complex
spectrum.

These point zero locations are common to both
the spectrum and the associated power
spectrum.

The phase of the complex valued polynomial
along with the measured intensity data can be
used to generate an initial guess for the function
which an iterative (error-reduction) algorithm
can improve.




The Weierstrass preparation theorem states that if a two-
dimensional function F(z,z,) is analytic for [z]|<a,
|z,|<b, let F(0,0) = 0, but F(0,z,)#0, then there is a
polycylinder |z|<d, |z,|<r in which F(z;,z,) can be
represented as follows :

F(z),2,) = 8(20,2,)(Z5 + pi(2))25 + -+ Pu(2)
where g is analytic, g(z;,z,)# 0, p;(z) is analytic in z, for
zj|<dand p,(0)=0(G =1, ..., m).

2+ py(2)2 4 p,(2) =0

This equation is called a pseudoalgebraic equation,
and this equation has m roots for each fixed z,.

For each 2z, the function F(z,z,) can be
approximated as a product form which is

F(z,zy) c(zy — )Nz, — 1)+ (25 = 1)

where 7,,7,,--,1,, (all of them depend on z,) are zeros of
F(zy,2,).




Reconstruction From Point Zero Locations :

When the modulus of F(u,v) goes to zero, the phase
Arg[ F(u,v)] becomes indeterminate. In the neighborhood
of a point zero associated with a complex factor, the field
can be expanded as a Taylor series about this point

F(u,v)=(4u+id,v)
and the phase becomes

Arg[ F(u,v)] = Arctan(A4,v/ Au)

Provided 4 =1 and 4, = +1 (positive zero if +1, negative
zero if -1), the phase will change by +2x for each circuit of

a closed path around the point zero. This effect is also
called a phase dislocation.




We first locate the real zero point locations from the
Fourier intensity, then locally approximate F'(u,v) from
the product of its zero point complex factors,

Fu,v)=(u—uy)+id,(v-v,),

for the point zero centered at (u,,v,).

If N real zero points are located, by setting the z, as the
real plane, we can approximate the function F'(u,v) as the
product of these N factors, i.e., by

F(uy) = [I(U, +id ),
n=1

where U, =(u—u,), V,=(v-v,), and 4, is the sign of nth
Z€ro.
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5 5 =
=
10 10
= . ASTATATANNY NSNS A TN .
1 5 : . % .'»\\\\ *.'\\\.'\\:.\:\;:Q\V 3 : 1 5 -
-
20 “ 20 =
250 25
3 -
30 30 -
10 20 30
Figure 6.7

112




Recovered phase after 30 iterations Recovered object 1: random phase

_——
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Figure 6.12 Figure 6.13
Recovered object 1: zero phase Recovered object 1: phase from model
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PDFET (Prior Discrete Fourier Transform)

= Use prior information to minimize error function:

2

.?H P <A5| Eésw,wmcma

= PDFT Relationships:

N
f(m) = Mm%@ﬁl:v ' m=-N, ..., N

n=-N

PDFT(r) = P(r) M.m e™
UML
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PDEFT for phase retrieval.

assume now that we have only the magnitude
data {IF(mA,nA)l, ImI<M,InI<N}, and A chosen
so that 7/A is greater than our estimate of s.

complex-valued function F(a,b) can be written
as:
F(a,b) = R(a,b) + iQ(a,b),

where both R and QQ are real-valued functions.

Letting r(x,y) and q(X,y) be the inverse Fourier
transforms of R and Q, hence

r(x,y) = [ f(x,y) + f(-x,-y) 1/2,
and

qx.y) = [ f(x,y) - f(-x,-y) 1/2i .

Note: R(a,b) 1s real and symmetric, that is
R(-a,-b)=R(a,b).

Data values [F(mA,nA)/ that are (nearly) zero

correspond to (nearly) zero values of both
R(mA,nA) and Q(mA,nA).




We use (some of) these point zeros, along with

our support information, to reconstruct r(x,y)
by means of the PDFT.

‘To reconstruct r(x,y) from zeros of R(a,b) via
the PDFT we need at least one nonzero value of
R; otherwise the PDFT estimate of r will be
identically zero.

Since F(-a,-b)=F(a,b), F(0,0) is real; therefore
R(0,0)=IF(0,0)l or R(0,0)=-1F(0,0)l; we take
R(0,0)=IF(0,0)l, arguing that f(x,y) is often
nonnegative in practice.

PDFT estimator of r(x,y) is
r(x,y)'=PDFTr(x,y)= p(x,y) 2z c(m,n) exp(i(mA,-s,

where Y.z denotes summation over (m,n) for
which (mA,nA) is one of the point zeros being
used, as well as the pair (0,0).

We find the coefficients c¢(m,n) by forcing the
Fourier transform to agree with IF(0,0)! at the
point (0,0) and to be zero at the point zero
locations; this is estimate r(X,y)' of r(x,y).
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Significance of phase and amplitude in
the Fourier domain

Adolf W. Lohmann,* David Mendlovic, and Gal Shabtay
Department of Physical Electronics, Faculty of Engineering, Tel Aviv University, 69978 Tel Aviv, Israel

Received March 5, 1997; revised manuscript received May 20, 1997; accepted May 22, 1997

We add new thoughts and aspects to the importance of phase and amplitude in the Fourier domain. We show

how very similar objects react radically differently

if, in the Fourier domain, either the phase was lost com-

pletely or the amplitude was modified to be constant. We also discuss the great influence of symmetry on the
relative significance of the Fourier amplitude and of the Fourier phase. We show how changing the value of
one pixel in some objects completely changes the significance of the Fourier phase and amplitude. © 1997

Optical Society of America [S0740-3232(97)00111-7]

1. DEFINITION OF THE PROBLEM

It is a widespread belief that the Fourier phase is more
important than the Fourier amplitude. Even if one ig-
nores the Fourier amplitude, it is still supposedly possible
to recover a fairly good image from the Fourier phase
alone. This belief was established several decades ago by
Kozma and Kelly! and others. The synthetic-aperture
radar community even named the radar signal they re-
ceived “phase history,” because they had only to preserve
the phase accurately. One of the most famous papers re-
garding the importance of the Fourier phase was written
by Oppenheim and Lim.‘2 These authors used careful for-
m{ﬁ&m’sb gfﬁgﬁ{’f{g about the validity of their find-
ings, but the community largely adopted the plain view
that the phase is more important than the amplitude.

Our aim is to shed some new light on this proposition.
In Section 2 we will define quantitatively how one can an-
swer the question of the relative significance of phase and
amplitude. In Section 3 we will briefly review some cases
that support the proposition. In Section 4 we mention an
important counterexample. We do not have a complete
answer to the question of which is more important, the
Fourier phase or the Fourier amplitude. But we will
present some numerical examples that indicate that the
symmetry properties of the object have some effect. Also,
it matters whether the object is real valued or somehow
complex. A real-valued object causes the Fourier trans-
form to be hermite symmetrical. Section 5 is dedicated
to symmetrical objects and Section 6 is dedicated to asym-
metrical objects. Some conclusions are drawn in Section
7.

2. QUANTITATIVE DESCRIPTION OF THE
PROBLEM

The object, which may be complex, is defined as

w(x) = |u(x)|expli $(x)]. (1

The associated spatial frequency spectrum is

u(v) = j u(x)exp(—i2mvx)dx, (2)

u(v) = A(v)explia(v)]. 3)

The question is, what is more important, A(v) or a(¥)?
One way to answer may be called test in isolation. For
example, the phase factor exp[ia(v)] is ignored. Hence,
the remainder of the frequency spectrum is

A(v) = va(v). (4)
The associated image is
valx) = jﬁA(v)exp(ﬂwvx)dv. (5)

The other kind of isolation yields

expli a v)]rect( é) = Tp(v). (6)

The rect function confines U z(v) into the bandwidth of the
Fourier amplitude A(v). The phase-only output is

vp(x) = f vp(v)exp(i2mvx)dv. @)
In many cases the image qualities of both v4(x) and v (x)
will be obvious, either quite good or quite poor.

To make a more general statement, one might compute
ensemble averages of normalized correlations:

f va(x)u*(x)dx
1/2|
| [ oaras

f vp(x)u*(x)dx

F= [ 2
[ erora] | [ e

One can pursue this correlation approach easily by invok-
ing the Parseval theorem, which converts those integrals
into the Fourier domain:

CA: ]W’ (8)

f ()P

C (9)

1/2]

0740-3232/97/112901-04$10.00 © 1997 Optical Society of America



Fig. 7. Reconstructions from an asymmetric object with zero
phase: peak phase zero amplitude-only reconstruction (upper
left), peak phase zero phase-only reconstruction (upper right),
peak phase 90° amplitude-only reconstruction (lower left), peak
phase 90° phase-only reconstruction (lower right).

Fig. 8. Reconstructions from an asymmetric object with totally
random phase: peak phase zero amplitude-only reconstruction
(upper left), peak phase zero phase-only reconstruction (upper
right), peak phase 90° amplitude-only reconstruction (lower left),
peak phase 90° phase-only reconstruction (lower right).

e Peak phase zero or 90°.
e u(x — xo) phase constant or random.

The outputs are shown in Figs. 7 and 8. The most re-
markable result here is the generation of a twin image in

Figs. 7 and 8. Again, the phase shift of the central peax
has a major influence on the phase-only and amplitude-
only outputs.

7. CONCLUSIONS

Computer experiments showed that imposing a change on
one pixel of an object may switch the importance of the
Fourier phase and the Fourier amplitude. We examined
the influence of symmetry and asymmetry of objects on
the significance of phase and amplitude in the Fourier do-
main. It is our conclusion that there is no strict confir-
mation of the proposition “phase is more important than
amplitude.” Several object properties such as symmetry
and reality play an important role in determining the sig-
nificance of phase and amplitude in the Fourier domain.

*Permanent address, Erlangen-Nurnberg University,
Physikalisches institut, Erwin Rommelstrasse 1, 91058
Erlangen, Germany.
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